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ABSTRACT

We propose an efficient scheme that combines density functional theory (DFT) with deep potentials (DPs), to systematically study convergence
issues in the computation of the electronic thermal conductivity of warm dense aluminum (2.7 g/cm3 and temperatures ranging from 0.5 eV to
5.0 eV) with respect to the number of k-points, the number of atoms, the broadening parameter, the exchange-correlation functionals, and the
pseudopotentials. Furthermore, we obtain the ionic thermal conductivity using the Green–Kubo method in conjunction with DP molecular
dynamics simulations, and we study size effects on the ionic thermal conductivity. This work demonstrates that the proposedmethod is efficient
in evaluating both electronic and ionic thermal conductivities of materials.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0030123

I. INTRODUCTION

Warm dense matter (WDM) is a state of matter lying between
condensed matter and plasma and consisting of strongly coupled ions
and partially degenerate electrons. WDM exists in the interiors of giant
planets1,2 and in the crusts ofwhite dwarf andneutron stars,3,4 and it can
be generated through laboratory experiments with diamond anvil cells,5

gas guns,6,7 and high-power lasers.7,8WDMalso plays an important role
in inertial confinement fusion (ICF).9 In these contexts, it is crucial to
understand the properties of WDM such as its equation of state and its
optical and transport properties. Owing to the lack of experimental data,
quantum-mechanics-based simulation methods such as Kohn–Sham
density functional theory (KSDFT),10,11 orbital-free density functional
theory (OFDFT),12 andpath-integralMonteCarlo13–16 have emerged as
ideal tools to studyWDM.16–20 Thermal conductivity is one of themost
important properties of WDM. For example, it has been widely studied
in the context of models of planetary interiors.21–23 It is a key parameter
governing the growth of hydrodynamic instabilities that arise with
various capsule designs for theNational Ignition Facility.24 It also plays a
key role in simulations of the interactions between lasers and metal
targets.25 The thermal conductivity has a significant influence on
predictions of ICF implosions in hydrodynamic simulations.26

The thermal conductivity includes both electronic and ionic
contributions. The Kubo–Greenwood (KG) formula27,28 has been
widely used in studies of the electronic thermal conductivity κe of liquid
metals andWDM.18,26,29–35Typically, theκe value is anaverage of results
from several atomic configurations, which are selected from first-
principles molecular dynamics (FPMD) simulations. However, it is
computationally expensive to perform FPMD simulations for large
systems, especially for WDM when the temperatures are high.19,33,36,37

Besides, it has been shown that size effects may substantially affect
κe.

30,33,38 For computations of the ionic thermal conductivity κI, we focus
on the Green–Kubo (GK) formula,27,39,40 where κI is expressed in terms
of the heat flux autocorrelation function, which requires knowledge of
the energy and the virial tensor of each atom from the molecular dy-
namics trajectory. Typically, this formula is used with empirical force
fields,41–43 since traditionalDFTmethods cannot yield an explicit energy
for each atom; note that ab initioGK formulas for evaluation of κI have
been proposed in some recent work.44–47 Besides, a long molecular
dynamics trajectory may be needed to evaluate κI, which poses another
challenge for DFT simulations.

While current experimental techniques only measure the total
thermal conductivity, first-principles methods have become ideal
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tools to yield electronic and ionic contributions separately. However,
only a few studies adopting first-principles methods have examined
transport properties by considering both contributions.32,48,49 For
some metals, the ionic contribution is not important,48 but this is not
the case for all metals, tungsten being one example.49 In addition,
first-principles methods are computationally expensive, especially
when a large system or a long trajectory is considered. In this regard,
there is a need for an efficient and accuratemethod that can yield both
electronic and ionic thermal conductivities of materials. Here, using
the KG and GK formulas, we propose a combined DFT and deep
potential (DP) method for this purpose, taking warm dense Al as
an example. The recently developed DP molecular dynamics
(DPMD)50–52 method learns first-principles data via deep neural
networks and yields a highly accurate many-body potential to de-
scribe the interactions among atoms. Compared with traditional
DFT,DPMDhas amuchhigher efficiencywhile retaining the ab initio
accuracy. In addition, linear-scaling DPMD can be parallelized to
simulate hundreds ofmillions of atoms.53,54 TheDPmethod has been
applied in a variety of contexts, such as crystallization of silicon,55

high-entropy materials,56 and isotope effects in liquid water,57,58 as
well as WDM.59,60

In this work, we demonstrate that theDPmethod in conjunction
with DFT can be used to obtain both electronic and ionic thermal
conductivities of warm dense Al. We use KSDFT, OFDFT, and
DPMD to study the electronic and ionic thermal conductivities of
warm dense Al at temperatures of 0.5 eV, 1.0 eV, and 5.0 eV with a
density of 2.7 g/cm3. The electronic thermal conductivity can be
accurately computed via the KG method based on the DPMD tra-
jectories instead of the FPMD trajectories. Importantly, we system-
atically investigate convergence issues with regard to the number of k-
points, the number of atoms, the broadening parameter, the
exchange-correlation functionals, and the pseudopotentials, together
with their effects on the determination of the electronic thermal
conductivity via DPMD simulations. Furthermore, the ionic thermal
conductivity can also be obtained via DPMD simulations, and we
study convergence for different sizes of systems and different lengths
of trajectories.

The remainder of the paper is organized as follows. In Sec. II, we
briefly introduce KSDFT,OFDFT, andDPMD, as well as the setups of
the simulations. We also briefly introduce the KG and GK formulas
that are used in this work. In Sec. III, we present the electronic thermal
conductivities computed using each of the three methods. We then
give a thorough discussion of convergence issues as they affect the
electronic thermal conductivity. Finally, we present results for the
ionic thermal conductivity of warm dense Al. We conclude our work
in Sec. IV.

II. METHOD

A. Density functional theory

The ground-state total energy within the formalism of DFT10,11

can be expressed as a functional dependence of the electron density.
The Hohenberg–Kohn theorems10 point out that the electron density
that minimizes the total energy is the ground-state density, while the
energy is the ground-state energy.10 Depending on the way in which
the electron kinetic energy is treated, there are two DFT methods,
namely, KSDFT11 and OFDFT.12 The electron kinetic energy in
KSDFT does not involve the electron density explicitly, but is

evaluated from the ground-state wave functions of electrons obtained
by self-consistent iterations. On the other hand, in OFDFT, the
electron kinetic energy is given approximately as an explicit density
functional,61–65 which enables a direct search for the ground-state
density and energy. As a result, KSDFT has higher accuracy, but
OFDFT is several orders more efficient, especially for large systems.
Mermin extended DFT to finite temperatures,66 in an approach that
has been widely used to describe electrons in WDM.18,29

We run 64-atom Born–Oppenheimer molecular dynamics
(BOMD) simulations with KSDFT using the QUANTUM ESPRESSO
5.0.2 package.67 The Perdew–Burke–Ernzerhof (PBE) exchange-
correlation (XC) functional68 is used. The projector augmented-
wave (PAW) potential69,70 is used, with three valence electrons
and a cutoff radius of 1.38 Å. The plane wave cutoff energy is set to 20
Ry for temperatures of 0.5 eV and 1.0 eV and to 30 Ry for 5.0 eV. We
only use the gamma k-point. Periodic boundary conditions are
adopted. The Andersen thermostat71 is used with theNVT ensemble,
and the trajectory length is 10 ps, with a time step of 1.0 fs.

We also perform 108-atom BOMD simulations with OFDFT,
using the PROFESS 3.0 package.72 Both PBE68 and local density
approximation (LDA)11 XC functionals are used, together with the
Wang–Teter (WT) kinetic energy density functional (KEDF)65 and
the Nosé–Hoover thermostat73,74 in the NVT ensemble. We run
OFDFT simulations for 10 ps, with a time step of 0.25 fs, andwe set the
energy cutoff to 900 eV. Periodic boundary conditions are adopted.

B. Deep potential molecular dynamics

The DP method50–52 learns the dependence of the total energy
on the coordinates of the atoms in a system and constructs a deep
neural network (DNN) model that predicts the potential energy and
force of each atom. In the training process, the total potential energy
Etot is decomposed into the energies of the different atoms:

Etot ��
i
Ei, (1)

where Ei is the potential energy of atom i. In general, through the
DNN, for each atom i, a mapping is established between Ei and the
atomic coordinates of its neighboring atoms within a cutoff radius rc.
Specifically, the DNNmodel consists of an embedding network and a
fitting network.50 The embedding network imposes constraints on the
atoms, such that the atomic coordinates obey symmetries under
translation, rotation, and permutation. On the other hand, the fitting
network maps the atomic coordinates from the embedding network
to Ei. Next, the training data are prepared as the total energy and the
forces acting on atoms are extracted from the FPMD trajectories.
Finally, the parameters of the DNN model are optimized by
minimizing a loss function. The resulting DNN-based model can be
used to simulate a large system with an efficiency comparable to that
when empirical force fields are used.

In this work, we adopt DNN-based models trained from either
KSDFT orOFDFT trajectories with theDeePMD-kit package.51With
the purpose of studying size effects on electronic thermal
conductivity, a series of cubic cells consisting of 16, 32, 64, 108, 216,
and 256 atoms are simulated for 10 ps with a time step of 0.25 fs. In
addition, we run systems of 16, 32, 64, 108, 256, 1024, 5488, 8192,
10 648, 16 384, 32 000, and 65 536 atoms to investigate the conver-
gence of the ionic thermal conductivity. The length of these
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trajectories is 500 ps, with a time step of 0.25 fs. We employ the
Nosé–Hoover thermostat73,74 in the NVT ensemble. Periodic
boundary conditions are adopted. All of the DPMD simulations are
performed using the modified LAMMPS package.75

C. Kubo–Greenwood formula

The electronic thermal conductivity κe is calculated from the
Onsager coefficients Lmn as

κe � 1
e2T

L22 −
L212
L11

( ), (2)

where T is the temperature and e is the electron charge. The Lmn are
obtained as the zero-frequency limits of the frequency-dependent
Onsager coefficients Lmn(ω):

Lmn � lim
ω→ 0

Lmn(ω). (3)

We follow the approach to the KG formula adopted by Holst et al.,76

according to which the Lmn(ω) are given by

Lmn(ω) � (−1)m+n 2πe2Z2
3m2

eωΩ

3�
ijαk

W(k) ϵik + ϵjk
2

− μ( )m+n−2
|〈Ψik|∇α|Ψjk〉|2

3 [f(ϵik)−f(ϵjk)]δ(ϵjk − ϵik − Zω), (4)

whereme is the electronmass,Ω is the cell volume,W(k) is the weight
of k-points in the Brillouin zone, μ is the chemical potential,Ψik is the
wave function of the ith band with eigenvalue ϵik, and f is the
Fermi–Dirac function. We use the chemical potential μ instead of the
enthalpy per atom, which does not affect the results for the electronic
thermal conductivity in one-component systems.76 Note that here we
use the momentum operator in Eq. (4) instead of the velocity op-
erator, and this introduces additional approximations due to the use
of nonlocal pseudopotentials.18,34,77–79 However, the nonlocal errors
have been demonstrated to be about 3.3% for liquid Al,78 and this is
considered to be sufficiently small for the purposes of this work. In the
future work, we will include the additional term caused by nonlocal
pseudopotentials. We also define the frequency-dependent electronic
thermal conductivity as

κe(ω) � 1
e2T

L22(ω)−L
2
12(ω)

L11(ω)[ ]. (5)

In practical applications of the KG method, the delta function in
Eq. (4) needs to be broadened. We adopt a Gaussian function,29 and
the delta function then takes the form

δ(E) � lim
ΔE→ 0

1��
2π

√
ΔEe

−E2/2ΔE2
. (6)

Here, ΔE controls the full width at half maximum (FWHM, denoted
by σ) of the Gaussian function through the relation σ ≈ 2.3548ΔE.

The KG method needs eigenvalues and wave functions com-
puted from DFT solutions of given atomic configurations. In
practice, we select 5–20 atomic configurations from the last 2 psMD
trajectories, with a time interval of 0.1 ps.We use both PBE and LDA
XC functionals and the associated norm-conserving (NC) pseu-
dopotentials to examine the influences of XC functionals and

pseudopotentials on the resulting electronic thermal conductivity.
We adopt two NC pseudopotentials for Al, which are referred to
here as PP1 and PP2. The PP1 pseudopotential is generated with the
optimized norm-conserving Vanderbilt pseudopotential method
via the ONCVPSP package.80,81 We use 11 valence electrons and a
cutoff radius of 0.50 Å. Our calculations of κe in a 64-atom cell
involve 1770, 2100, and 5625 bands at temperatures 0.5 eV, 1.0 eV,
and 5.0 eV, respectively. The PP2 pseudopotential is generated
through the PSlibrary package.82 We use the Troullier–Martins
method,83 and the cutoff radius is set to 1.38 Å. We choose three
valence electrons for each atom. We select 720, 1100, and 4800
bands for calculations of κe at temperatures 0.5 eV, 1.0 eV, and 5.0
eV, respectively. The plane wave cutoff energies of both pseudo-
potentials are set to 50 Ry. Generally, the PP1 pseudopotential is
used in most cases, with the PP2 pseudopotential only being used to
compare the effects of different pseudopotentials on κe. Figure 1
shows the computed averaged κe(ω) with respect to different
numbers of atomic configurations from 108-atom DPMD trajec-
tories at 0.5 eV and 5.0 eV. The DP model is trained based on the
108-atomOFDFT trajectories using the PBE XC functional. We can
see that 20 atomic configurations are enough to converge κe(ω).
Additionally, κe(ω) converges more easily at the relatively low
temperature of 0.5 eV. Therefore, we choose 20 atomic configu-
rations for cells with 108 atoms or less at all the three temperatures.
For systems with more than 108 atoms, we respectively select 5 and
10 atomic configurations for temperatures smaller than 5.0 eV and
equal to 5.0 eV, unless otherwise specified.

D. Green–Kubo formula

In the DPMD method, the total potential energy of the system is
decomposed onto each atom. In this regard, the ionic thermal con-
ductivity can be calculated through the GK method40 with the formula

κI � 1
3ΩkBT2

∫+∞

0
〈Jq(t) · Jq(0)〉 dt, (7)

whereΩ is the cell volume, T is the temperature, kB is the Boltzmann
constant, 〈· · ·〉 is the ensemble average, and t is time. Jq in Eq. (7) is the
heat current of a one-component system in the center-of-mass frame
and takes the form

Jq ��
N

i�1
εivi −

1
2
�
N

i�1
�
N

j≠ i
(vi · Fij)rij. (8)

Here, vi is the velocity of the ith atom, and ϵi is the energy of the ith
atom including ionic kinetic energy and potential energy, where the
potential energy is directly obtained by theDNN.Fij is the force acting
on the ith atom due to the presence of the jth atom, with rij defined as
ri − rj. It is worth mentioning that Eq. (8) is valid for two-body
potentials but yields an error of about 20% in Jq when a many-body
potential (e.g., the deep potential) is adopted.84 Importantly, as will be
shown below, the ionic thermal conductivity of warm dense Al is at
least two orders of magnitudes smaller than the electronic thermal
conductivity. Therefore, we still consider Eq. (8) as a valid but ap-
proximate formula to yield the ionic thermal conductivity of warm
dense Al with DPMD. Additionally, we recommend the use of a more
complete formula for those systems whose ionic thermal conductivity
is an important part of the total thermal conductivity.
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Equation (7) can also be written as

κI � ∫+∞

0
CJ(t) dt, (9)

from which the autocorrelation function of the heat current is de-
fined as

CJ(t) � 1
3ΩkBT2

〈Jq(t) · Jq(0)〉. (10)

III. RESULTS

A. Accuracy of DP models

We first perform FPMD simulations of Al based on KSDFT and
OFDFT at temperatures of 0.5 eV, 1.0 eV, and 5.0 eV. The PBE XC
functional is used, and the FPMD trajectory length is 10 ps. The cell
contains 64Al atoms. TwoDPmodels, namedDP-KS andDP-OF, are
trained, based on the KSDFT and OFDFT trajectories, respectively.
Note that the accuracy of the DPmodels in describing warm dense Al
at the three temperatures has been demonstrated in our previous
work,59 where we showed that DPMD has excellent accuracy in
reproducing structural and dynamical properties, including radial
distribution functions and static and dynamic structure factors.

Here, we first focus on the frequency-dependent Onsager co-
efficients Lmn(ω). Figure 2 shows the L11(ω), L12(ω), and L22(ω)
computed via different methods at 0.5 eV; L21(ω) is not shown, since
L21(ω) � L12(ω), as derived from Eq. (4). We can see that for L11(ω)
and L22(ω) all four methods yield very similar results, but for L12(ω)

there are deviations at low frequencies. Themain reason for this is the
greater sensitivity ofL12(ω) to the number of ionic configurations, and
20 snapshots are not enough to provide good convergence. We also
run a test with 40 snapshots, and this improves the results, as can be
seen in Fig. 2(d). However, the resulting electronic thermal con-
ductivity dependsmainly on L22(ω) at the temperatures considered in
this work, and so the small deviations in L12(ω) do not affect the
computed κe(ω), as will be shown next.

The results for the frequency-dependent electronic thermal
conductivity κe(ω) computed using the four different methods are
illustrated in Fig. 3.We can see that theOFDFT results agree well with
the KSDFT ones, suggesting that OFDFT has the same accuracy as
KSDFT in yielding atomic configurations for subsequent computa-
tions of κe(ω) via the KGmethod, even though some approximations
are made with regard to the electron kinetic energy65 and the local
pseudopotential85 within the framework of OFDFT. Impressively, the
DP models trained from FPMD trajectories yield almost identical
κe(ω) when compared with the DFT results, which proves that the DP
models can yield highly accurate atomic configurations for subse-
quent calculations of κe(ω). In conclusion, the input atomic con-
figurations for the calculation of κe(ω) can be generated by efficient
DPMD models without loss of accuracy, which is beneficial for
simulating a large number of atoms to mitigate size effects. Although
the preparation of the training data in the DPMD model requires
additional computational resources, we find that running FPMD
with a cell consisting of 64 atoms is sufficient to generate reliable

FIG. 1. Convergence of frequency-dependent electronic thermal conductivity κe(ω) of Al with respect to the number of atomic configurations (snapshots) selected from DPMD
trajectories. The temperature is set to (a) 0.5 eVand (b) 5.0 eV. The number of snapshots used together with the KG formula (the broadening parameter is set to 0.4 eV) is shown by
different line styles. The DP model is trained from the OFDFT trajectories using the PBE XC functional. The simulation cell contains 108 atoms.
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DPMD models. Therefore, additional computational costs are saved
once larger numbers of atoms are adopted in the linear-scaling
DPMD method.59

B. Convergence of electronic thermal conductivity

Previous work30,33,38 has shown that the electronic thermal
conductivity κe depends strongly on both the number of k-points and
the number of atoms. Additionally, the broadening parameter should
be chosen appropriately to yield a meaningful κe. Here, we system-
atically investigate these issues by adopting the DPMD model to
generate atomic configurations for subsequent calculations of κe. The
DPMDmodel is trained from OFDFT-based MD trajectory with the
PBE XC functional. By utilizing the snapshots from the DPMD
trajectory, we obtain κe by using the KG formula. Furthermore, we
study the effects of different XC functionals and pseudopotentials in
affecting κe.

1. Number of k-points

We first investigate the convergence of κe(ω) with respect to
different numbers of k-points. Figure 4 illustrates an example of warm
dense Al in a 64-atom cell at a temperature of 1.0 eV. The k-point
meshes are chosen to be 13 13 1, 23 23 2, 33 33 3, and 43 43 4

in the calculations of κe(ω). The results show that κe(ω) converges
when 3 3 3 3 3 k-points are used. In fact, the number of k-points
required for convergence of κe(ω) varies with different numbers of
atoms and at different temperatures. Table I lists the sizes of k-points

FIG. 2. Frequency-dependent Onsager kinetic coefficients (a) L11, (b) L12, and (c)
L22 of Al at a temperature of 0.5 eVas computed using the KS, OF, DP-KS, and DP-
OF methods. DP-KS and DP-OF refer to the DP models trained from OFDFT and
KSDFT molecular dynamics trajectories, respectively. The broadening parameter
used in the KGmethod is set to 0.4 eV. The simulation cell contains 64 Al atoms. (d)
shows the improvement in the results for L12 obtained by using 40 rather than 20
snapshots.

FIG. 3. Frequency-dependent electronic thermal conductivity κe(ω) as computed
using the KG method (the broadening parameter is set to 0.4 eV) with snapshots
from KS, OF, DP-KS, and DP-OF molecular dynamics trajectories. The temper-
atures are (a) 0.5 eV, (b) 1.0 eV, and (c) 5.0 eV. DP-KS and DP-OF refer to the DP
models trained from OFDFT and KSDFT molecular dynamics trajectories, respec-
tively. The cell contains 64 Al atoms.

FIG. 4. Convergence of frequency-dependent electronic thermal conductivity κe(ω)
of Al with respect to the number of k-points. The temperature is set to 1.0 eV. The k-
point samplings utilized with the KG method (the broadening parameter is set to
0.4 eV) are chosen from 13 13 1 to 43 43 4. The DP model is trained from the
OFDFT trajectories using the PBE XC functional. The cell consists of 64 atoms.
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that are needed to converge κe(ω) with numbers of atoms ranging
from 16 to 256 at temperatures of 0.5 eV, 1.0 eV, and 5.0 eV. We find
that the number of k-points required exhibits a trend to decrease at
higher temperatures. For instance, the numbers of k-point samplings
required for a 32-atom cell at temperatures of 0.5 eV, 1.0 eV, and
5.0 eV are 63 63 6, 53 53 5, and 33 33 3, respectively. This can
be understood from the fact that the Fermi–Dirac distribution of
electrons around the Fermi energy becomes sharper at low tem-
peratures. Therefore, a dense mesh of k-points is needed to represent
the detailed structures around the Fermi surface at low temperatures.

2. Number of atoms

The value of κe(ω) converges not only for a sufficient number of
k-points but also for a sufficient number of atoms in the simulation
cell. To demonstrate this, we plot κe(ω) with respect to different
numbers of atoms in Fig. 5. For each size of cell, the number of k-
points is chosen large enough to converge κe(ω), as listed in Table I.
We find the following. First, for temperatures of 0.5 eV, 1.0 eV, and
5.0 eV, we find that a 256-atom system is large enough to converge
κe(ω). Second, in most cases, κe(ω) does not monotonically decrease
but has a peak at low frequencies ranging from 0.3 eV to 0.6 eV. This
peak moves toward ω � 0 when a larger number of atoms is used, and
almost disappears in large cells such as the 432-atom cell at 0.5 eV.
Similar to what was found in previous work,38 this phenomenon is
caused by size effects. Third, κe(ω) converges more rapidly with
respect to the number of atoms at high temperatures, suggesting that
size effects are less significant at higher temperatures. For example,
the values of κe for the 16- and 64-atom systems at 0.5 eV are 59.7%
(195.5Wm−1 K−1) and 15.6% (409.3Wm−1 K−1) lower than the value
for the 256-atom system (485.1Wm−1 K−1). Meanwhile, the values of
κe for the 16- and 64-atom systems at 5.0 eV are only 47.7%
(669.7Wm−1 K−1) and 7.5% (1182.2Wm−1 K−1) lower than the value
for a 256-atom system (1281.7 W m−1 K−1).

We perform a further analysis to elucidate the origin of the size
effects in computations of κe(ω). As Eq. (4) shows, for a given energy
interval ϵik −ϵjkwith electronic states i and j at a specific k point, κe(ω)
should converge provided there are a sufficient number of electronic
eigenstates. However, it can be seen from Fig. 5 that the computed
κe(ω) becomes substantially larger at low frequencies as the number of
atoms in the simulation cell increases. These results imply that even
when there are enough k-points for convergence to be reached, if
only a small number of atoms is used, then the small energy intervals

obtained from the finite-size DFT calculations do not provide suf-
ficient information to allow evaluation of κe(ω).

To clarify this issue, we define an energy interval distribution
function (EIDF) as

g(E) � 1
Np
�
i> j,k

W(k)δ(ϵik − ϵjk −E), (11)

where W(k) represents the weights of the k-points used in the DFT
calculations, ϵik and ϵjk are the eigenvalues, andNp is a normalization
factor. We choose warm dense Al systems at temperatures of 0.5 eV
and 5.0 eV, with the selected energy intervals computed from the
bands occupied by 3s and 3p electrons, which can be identified from
the density of states (DOS), as illustrated in Fig. 6. The energy intervals
satisfy the condition that E < 1.0 eV. In addition, we consider the
bands within 6.0 eV and 50.5 eV above the chemical potential μ for
temperatures of 0.5 eV and 5 eV, respectively. The results for g(E) with
respect to different numbers of atoms ranging from 16 to 432 are
illustrated in Fig. 7. The EIDF g(E) becomes larger for small E as the
number of atoms increases, and it converges when the number of
atoms reaches 256 for both temperatures 0.5 eV and 5.0 eV. The

TABLE I. Sizes of k-points adopted in KSDFT calculations to converge the electronic
thermal conductivity of Al with different numbers N of atoms in the simulation cell at
temperatures of 0.5 eV, 1.0 eV, and 5.0 eV.

N 0.5 eV 1.0 eV 5.0 eV

16 8 3 8 3 8 7 3 7 3 7 3 3 3 3 3
32 6 3 6 3 6 5 3 5 3 5 3 3 3 3 3
64 3 3 3 3 3 3 3 3 3 3 1 3 1 3 1
108 2 3 2 3 2 2 3 2 3 2 1 3 1 3 1
216 2 3 2 3 2 2 3 2 3 2 1 3 1 3 1
256 2 3 2 3 2 2 3 2 3 2 1 3 1 3 1
432 2 3 2 3 2 N/A N/A

FIG. 5. Convergence of the electronic thermal conductivity κe(ω) with respect to the
number of atoms (from 16 to 432) in the simulation cell. The temperature is set to (a)
0.5 eV, (b) 1.0 eV, and (c) 5.0 eV. (d)–(f) are magnified views of the peaks in (a)–(c),
respectively. For the temperature of 0.5 eV, two 432-atom snapshots with 23 23 2
k-points are chosen to test the convergence of κe(ω). The DP model is trained from
the OFDFT trajectories using the PBE XC functional. The broadening parameter is
set to 0.4 eV.
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increase in g(E) at small E implies that more energy eigenvalues with
values close to one another appear in a larger cell withmore atoms. In
other words, because of the finite number of atoms used in the
simulation cell, the energy levels are discretized to some extent,
resulting in a lack of energy intervals, especially for those small values.
In particular, these small energy intervals are of considerable im-
portance in the evaluation of κe(ω) when ω→ 0, as shown in Eq. (4).

3. Broadening parameter

The FWHM broadening parameter σ that appears in the δ(E)
function in Eq. (6) substantially affects the resulting electronic
thermal conductivity κe(ω) when ω→ 0. We therefore investigate the
influence of the choice of σ on the computed κe(ω) by analyzing the
EIDF g(E). Taking Al at 0.5 eV as an example, we plot in Fig. 8 both
g(E) and κe(ω) of a 256-atom cell, which is large enough to converge
g(E) or κe(ω), as demonstrated above. When the broadening effect is
small (σ � 0.01 eV), g(E) and κe(ω) decrease dramatically below
0.2 eV, which is a consequence of the discrete band energies. Thus, a
suitable σ needs to be chosen to compensate for the discrete band
energies. For instance, the value of g(E) at E � 0 increases from
0.22 eV−1 (σ � 0.01 eV) to 0.99 eV−1 (σ � 0.4 eV). However, g(E)
becomes saturated if too large a σ is applied, resulting in over-
correction of κe(ω) such that the curve at frequencies lower than 0.6
eV decreases. Therefore, to compensate for the discrete band energies
while avoiding overcorrection, we choose σ to be 0.4 eV for warm
dense Al at all of the temperatures considered in this work. It is worth
mentioning that a majority of studies, including this one, treat the
broadening parameter as an adjustable variable to yield a better
characterized curve of frequency-dependent thermal con-
ductivity.18,29–31,33,34,38 Although some physical criteria have been
proposed,86 no definite conclusions have yet been drawn regarding
the choice of the adjustable variable. In this work, we choose the
adjustable parameter in terms of sufficiently small energy intervals,
which are possible when a sufficiently large supercell is used in the
DFT calculations. κe at zero frequency is obtained by linear ex-
trapolation and is illustrated in Fig. 9.

4. Exchange-correlation functionals

Westudy the influences of the LDAandPBEXC functionals on the
computed κe(ω) by first validating the atomic configurations generated
by FPMD simulations. Specifically, atomic configurations are chosen
from two 256-atomDPMD trajectories, which are generated by twoDP

FIG. 6. Density of states of a 256-atom cell at temperatures of (a) 0.5 eVand (b) 5.0
eV. The Fermi–Dirac function at the same temperature is plotted as a black solid line.
The DP-OF model refers to the DP model trained from OFDFT molecular dynamics
trajectories.

FIG. 7. Energy interval distribution function of different cells at (a) 0.5 eV and (b)
5.0 eV. Bands within 6.0 eV and 50.5 eV above the chemical potential μ are
considered for temperatures of 0.5 eV and 5 eV, respectively. Different line styles
correspond to different numbers of atoms (from 16 to 432) in the simulation cell. The
DP model is trained from the OFDFT trajectories using the PBE XC functional.

FIG. 8. (a) Energy interval distribution function and (b) electronic thermal conduc-
tivity of a 256-atom cell at 0.5 eV. The snapshots are from DPMD simulations. The
DPMD model is trained from OFDFT trajectories with the PBE XC functional.
Different line styles represent different values of the broadening parameter σ.
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models trained fromOFDFTwith theLDAandPBEXCfunctionals.We
then adopt the KG method using the PP1 pseudopotentials generated
with the same XC functional and obtain κe at temperatures of 0.5 eV,
1.0 eV, and 5.0 eV. As shown in Fig. 9 and listed in Table II, the κe values
obtained from the PBE XC functional are 485.1 W m−1 K−1, 764.1 W
m−1 K−1, and 1281.7 Wm−1 K−1 at temperatures of 0.5 eV, 1.0 eV, and
5.0 eV, respectively, while the κe values from the LDAXC functional are
1.6% lower (477.3 W m−1 K−1), 1.3% higher (773.8 W m−1 K−1), and
2.8% lower (1246.4Wm−1 K−1) than those from the PBEXC functional
at 0.5 eV, 1.0 eV, and 5.0 eV, respectively. Therefore, we conclude that
the LDA XC functional yields almost the same κe values as the PBE XC
functional. Note that in a recent work87 that adopted the HSE XC
functional, there were some differences in the electronic thermal and
electrical conductivities ofwarmdenseAl comparedwith those obtained
from the PBE XC functional.

5. Pseudopotentials

We investigate how norm-conserving pseudopotentials affect the
computed electronic thermal conductivity κe. First of all, Fig. 6 shows the
DOSof two types of pseudopotentials (PP1 and PP2) at temperatures of
0.5 eV and 5.0 eV, and we can see that the two pseudopotentials yield
similar DOS of 3s3p electrons. Next, Fig. 9 illustrates the computed κe
from two types of pseudopotentials and the computed data from
Knyazev and Levashov,31 Vlcěk et al.,34 andWitte et al.,87 as well as the
experimental data fromMcKelvey et al.88 The values of κe from the two
types of pseudopotentials are also listed in Table II.

We find the following. First, the DP-OF results agree reasonably
well with the DP-KS ones, as has previously been shown in Fig. 3. For
example, DP-KS with the PP1 pseudopotential and the PBE XC
functional yields κe � 466.5Wm−1 K−1 at 0.5 eV, which is 3.8% lower
than that from DP-OF (485.1 W m−1 K−1) at the same temperature,
and the relative difference decreases to 1.9% at 5.0 eV. These results
indicate that the OFDFT is appropriate for study of the electronic

thermal conductivity of warmdense Al in the temperature range from
0.5 eV to 5.0 eV. Second, our calculations with the PP1 and PP2
pseudopotentials yield similar κe values of around 480Wm−1 K−1 and
770Wm−1 K−1 at temperatures of 0.5 eV and 1.0 eV, respectively. The
results are consistentwith those ofKnyazev andLevashov,Vlcěk et al.,
andWitte et al.However, the κe values from the two pseudopotentials
at a temperature of 5.0 eV deviate. For instance, the result from DP-
OF (PBE) with the PP2 pseudopotential is 1604.6 W m−1 K−1, while
the result with the PP1 pseudopotential is only 1281.7 W m−1 K−1,
which is 20.1% lower than the former. The κe values from PP1 are
close to those from Witte et al., while the values from PP2 are
consistent with Knyazev and Levashov’s data. Note that Witte et al.
used a PAW potential with 11 valence electrons and the PBE XC
functional, whereas Knyazev and Levashov adopted an ultrasoft
pseudopotential with three valence electrons and the LDA XC
functional. It is alsoworthmentioning thatWitte et al. used a 64-atom
cell, whereas Knyazev and Levashov used a 256-atom cell, and so,
according to our analysis, size effects may be present in the former
work. In general, both values of electronic thermal conductivity lie
within the range of the experimental data obtained byMcKelvey et al.
Even so, our results demonstrate that different pseudopotentials may
substantially affect the results for κe at high temperatures. One
possible reason for the deviation of κe at 5.0 eV is the number of
electrons included in the pseudopotentials. However, it is also possible
that the deviation comes from the fact that the nonlocal potential
correction77,78 in Eq. (4) is ignored. Therefore, nonlocal corrections
must be considered when calculating the conductivity via the KG
formula, and these will be the subject of our future work.

C. Ionic thermal conductivity

The ionic thermal conductivity of warm dense Al can be
evaluated using the GK formula, since the atomic energies are
available in the DPMD method. However, the computed ionic
thermal conductivity may be affected by trajectory length and system
size. We therefore study the convergence of the ionic thermal con-
ductivity with respect to different lengths of trajectories and system
sizes. We first test the convergence of the autocorrelation function
CJ(t) in Eq. (10) with respect to different lengths of trajectories, and
the results are shown in Fig. 10. A 10 648-atom Al system is

FIG. 9. Electronic thermal conductivities κe of warm dense Al. DP-KS and DP-OF
refer to the DPMD models trained from KSDFT and OFDFT, respectively. Atomic
configurations are generated from the DP-KS and DP-OF models. The broadening
parameter is set to 0.4 eV. Note that nonlocal corrections have been neglected in this
study. Results from Knyazev and Levashov,31 Vlcěk et al.,34 and Witte et al.,87 as
well as experimental results from McKelvey et al.,88 are shown for comparison.

TABLE II. Electronic thermal conductivity κe and ionic thermal conductivity κI (both in
units of W m−1 K−1) at temperatures T of 0.5 eV, 1.0 eV, and 5.0 eV. The results are
computed from the DP-KS andDP-OFmolecular dynamics trajectories. DP-KSandDP-
OF refer to the DP models trained from KSDFT and OFDFT molecular dynamics
trajectories, respectively.

T (eV) κe(PP1) κe(PP2) κI

0.5 485.1 486.6 1.422 ± 0.034
DP-OF (PBE) 1.0 764.1 772.3 1.469 ± 0.086

5.0 1281.7 1604.6 2.091 ± 0.031
0.5 477.3 475.6 1.394 ± 0.047

DP-OF (LDA) 1.0 773.8 779.0 1.318 ± 0.032
5.0 1246.4 1568.5 2.141 ± 0.051
0.5 466.5 1.419 ± 0.038

DP-KS (PBE) 1.0 771.0 1.393 ± 0.066
5.0 1305.8 2.075 ± 0.066
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considered, with four different lengths of trajectories, namely, 25 ps,
125 ps, 250 ps, and 500 ps, and the DPMD model is trained from
OFDFT with the PBE XC functional at a temperature of 0.5 eV. As
shown in Fig. 10, theCJ(t) curves abruptly decay within the first 0.1 ps
and oscillate with respect to time t.We can see that the oscillations are
strongly affected by the length of simulation time. For example, the
CJ(t) curve obtained from the 25 ps trajectory exhibits substantially
larger oscillations than the curves obtained from the other three
trajectories, while the best convergence is achieved with the 250 ps
trajectory. These results suggest that to obtain a converged CJ(t) for
warmdenseAl, a few hundreds of picoseconds are required, even for a
system with more than 104 atoms, which is beyond the capability of
FPMD simulations but can be realized by DPMD simulations.

Next, to examine size effects on the ionic thermal conductivity,
we run simulations for 500 ps for 12 different system sizes, with the
number of atoms per cell ranging from 16 to 65 536. The results are
shown in Fig. 11. SinceCJ(t) cannot strictly reach zero, the correlation
time t is truncated in the integral of CJ(t) in Eq. (9). In practice, we
choose multiple truncations of t ranging from 0.5 ps to 1.5 ps and
compute the error bars with the maximum and minimum integral
values, which are also shown in Fig. 11.We find that the ionic thermal
conductivity increases with increasing system size in the range from
16 to 1024 atoms per cell at all three temperatures considered for
warmdenseAl.With further increase in system size, the ionic thermal
conductivity begins to oscillate until the largest system size is reached
(65 536 atoms). We can conclude that at least a 1024-atom system
should be adopted and that better convergence of ionic thermal
conductivity can be achieved if a larger system is used. A 65 536-atom
cell is adopted to compute the ionic thermal conductivity, and the
results are shown in Table II. The ionic thermal conductivity of warm
dense Al is around 1 W m−1 K−1–2 W m−1 K−1, which is more than
two orders of magnitudes smaller than the electronic thermal

conductivity. Additionally, it should be noted that the PBE and LDA
XC functionals yield similar values for the ionic thermal conductivity.

IV. CONCLUSIONS

We have proposed a method that combines DPMD and DFT to
calculate both electronic and ionic thermal conductivities of mate-
rials, with the DP models being trained from DFT-based MD tra-
jectories. The resulting DP models accurately reproduce the
properties predicted by DFT. In addition, they can be utilized to
efficiently simulate a large cell consisting of hundreds of atoms, which
largely mitigates the size effects caused by periodic boundary con-
ditions. By taking the atomic configurations fromDPMD trajectories,
we can use the eigenvalues and eigenstates of a given system obtained
from DFT solutions and employ the KG formula to compute the
electronic thermal conductivity. In addition, the DP models yield
atomic energies, which are not available in the traditional DFT
method. By using the atomic energies to evaluate the ionic thermal
conductivity, both electronic and ionic contributions to the thermal
conductivity can be obtained for a given material.

We took warm dense Al as an example and thoroughly studied
its thermal conductivity. Expensive FPMD simulations of large
systems can be replaced by DPMD simulations with much smaller
computational resources. We first computed the temperature-
dependent electronic thermal conductivities of warm dense Al
from 0.5 eV to 5.0 eV at a density of 2.7 g/cm3 with snapshots from
OFDFT, KSDFT, and DPMD, and the three methods yielded almost
the same results, demonstrating that the DPMD method has similar
accuracy to FPMD simulations. We then systematically investigated
convergence issues with respect to the number of k-points, the
number of atoms, the broadening parameter, the exchange-

FIG. 10. Autocorrelation function of heat current CJ(t) evaluated from different
lengths of DPMD trajectories, namely, 25 ps, 125 ps, 250 ps, and 500 ps. The
number of Al atoms in the cell is 10 684 and the temperature T � 0.5 eV. The DPMD
model is trained from OFDFT with the PBE XC functional.

FIG. 11. Computed ionic thermal conductivity of warm dense Al at (a) 0.5 eV, (b) 1.0
eV, and (c) 5.0 eV for 12 different system sizes. The numbers of atoms per cell in
these systems are N � 16, 32, 64, 108, 256, 1024, 5488, 8192, 10 648, 16 384,
32 000, and 65 536. The results are obtained through DPMD trained from OFDFT
with the PBE XC functional.
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correlation functionals, and the pseudopotentials. A 256-atom system
was found to be large enough to converge the electronic thermal
conductivity. The broadening parameter was chosen to be 0.4 eV
according to our analysis of the energy interval distribution function.
We found that both LDA and PBE XC functionals yielded similar
results for the electronic thermal conductivity. However, the choice of
pseudopotentials may substantially affect the resulting electronic
thermal conductivity. We also computed the ionic thermal con-
ductivity with DPMD and the GK method and investigated con-
vergence issues with respect to trajectory length and system size. We
found that the ionic thermal conductivity of warmdenseAl wasmuch
smaller than its electronic thermal conductivity. In summary, the
DPMD method provides promising accuracy and efficiency in
studying both electronic and ionic thermal conductivities of warm
dense Al and should be considered for future work on modeling
transport properties of WDM.
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